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Previously derived forms of instability conditions at the spin orbital level are 
specialized to orbital levels of different kinds. Similarly the special forms of 
the gap equation that are obtained for different types of broken symmetry 
solutions are analyzed and discussed. 
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1. Introduction 

Correlation in electronic systems is usually associated with "anything going 
beyond Har t r ee -Fock" .  The term " H a r t r e e - F o c k "  then normally means restric- 
ted Har t r ee -Fock  (RHF) and the most common restriction is that two electrons 
with different spins are associated with the same orbital. The term unrestricted 
Ha r t r ee -Fock  (UHF) is often used for a situation where that particular restriction 
of doubly filled orbitals is removed.  There  are also other restrictions however.  
Even in U H F  the spin orbitals are normally simple products of an orbital and 
a spin function, and in practice the orbitals are often restricted to be real functions. 

A method in which the total wave function is approximated by a single deter-  
minant  built up of general spin orbitals (GSO), 

r (X) = 4~k 1 (r)o~ (~) + 4~kE(r)fl ((), 

where the orbital components  ~bkl and ~bk2 can be complex, might be called the 
general Ha r t r ee -Fock  method (GHF).  In contrast to the symmetry restricted 
R H F  spin orbitals those occurring in the G H F  (UHF) procedure are of so-called 
broken symmetry  type. That  expression does not imply, however,  that they have 
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no symmetry at all. Even in such cases the effective one electron operator usually 
commutes with certain symmetry operations and the spin orbitals transform 
according to one of the irreducible representation or co-representations of the 
corresponding group. That group is then a subgroup of the full group of the 
basic many electron Hamiltonian, and the GHF spin orbitals in general have a 
lower symmetry than the RHF spin orbitals. 

A systematic way of classifying different types of GHF solutions has been 
developed by Fukutome [1]. Irrespective of any spatial symmetries the total 
Hamiltonian commutes with all spin rotations and time reversal. If the effective 
one electron Hamiltonian Ygefr, also commutes with all these operations we have 
the RHF case. If on the other hand Yg~fr only commutes with the elements of a 
subgroup, we have one of the broken symmetry cases. Including the trivial 
subgroups there are eight such inequivalent subgroups and every GHF solution 
must therefore "belong" to one of the corresponding eight classes. 

The association of a GHF solution to such a class means therefore that the 
corresponding spin orbitals transform according to the irreducible representa- 
tions or co-representations of the subgroup in question. The properties of such 
a set of spin orbitals are best described with reference to their Fock-Dirac matrix. 
The orbital components of that matrix--the number density matrix and the spin 
density vector--can be real or complex. The spin density matrix vector can have 
one or more vanishing components, and its direction can be fixed in space or 
vary with position. 

An extension of this scheme to include also spatial point group symmetry has 
been developed by Ozaki and Fukutome [2]. An algorithm for obtaining all 
double valued irreducible (co-) representations for the corresponding groups has 
been constructed by Ozaki [3]. 

The transition from a class of GHF solutions characterized by a certain subgroup 
to one with a smaller group is associated with an instability. From the point of 
view of the variational principle this means that the extremum obtained with 
spin orbitals of the higher symmetry is unstable with respect to variations leading 
to the particular kind of lower symmetry. Thouless [4] seems to have been the 
first one to formulate explicit stability conditions for Hartree-Fock functions. 
In quantum chemistry the names Cizek-Paldus [5] and Fukutome [6] mark 
important developments in this area. A slightly different formulation of the 
problem has been given recently [7]; in this paper we also give a relatively 
extensive list of papers in this field by the previously mentioned authors and 
their collaborators. The conditions for instability are associated with the appear- 
ance of negative eigenvalues of a certain matrix, and the corresponding eigen- 
vectors give information as to where in function space one should look for the 
broken symmetry solutions. 

In order to find explicit broken symmetry solutions we have to go beyond the 
instability conditions, however. An interesting procedure for doing that, which 
has proved powerful in many applications, is by means of so-called pairing [8]. 
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Each spin orbital of higher symmetry (normally the RHF spin orbitals) is paired 
with a spin orbital from the orthogonal complement of the occupied higher 
symmetry spin orbitals. This procedure constitutes a natural extension of the 
way the instability conditions are formulated in Ref. 7. The strength of this 
pairing is determined by the variational principle, and the resulting conditions 
can be formulated as an integral equation for a "gap function" - the gap equation 
[8], [9]. The gap equation has been solved explicitly for a few model systems 
[10]-[13]. The results are encouraging and there are reasons to believe that this 
method will provide an efficient and explicit way of taking at least certain kinds 
of correlation in large systems into account. 

Both the instability conditions and the gap equation are primarily formulated 
at a general spin orbital level. Fukutome's classification makes it possible to 
distinguish eight different cases. A derivation of the form of the corresponding 
pairs of spin orbitals has recently been given [14]. In order to proceed further 
we need to go from the spin orbital to the orbital level. This will mean a 
specialization of the concepts of singlet and non-singlet instability [5]-[7]. 

The purpose of the present paper is to derive orbital forms of instability conditions 
and gap equations. We will do this in a few typical cases which can be expected 
to be the most useful ones. At the same time this will illustrate the general 
method which can be applied in other cases as well. 

2. Orbital Forms of Instability Conditions 

Our starting point is the formulation of the stability problem presented in 
Ref. 7. A variationally defined extremum with a single determinant total wave 
function is unstable if the matrix 

t912+~2 911-~31 J (1) 

has at least one negative eigenvalue. The size of this matrix is (2N)x (2N), 
where N is the number of electrons in the system considered. The N x N matrices 
91i and ~i  are real. 911 and ~31 a re  the real and 912, ~2 the imaginary parts of 
the matrices 

91 = 911 + i912; ~3 = ~31 + i~32, (2) 

defined by 

Akt = <Ok lO lO l> ;  

Bk, = <Dk,[QID>. (3) 

Here D is the reference determinant associated with the extremum point that 
is investigated, and Dk, Dk~ denote determinants which are singly and doubly 
"excited" with respect to this reference determinant, respectively. The operator 
O is 

O = S f - E .  1, (4) 
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where ~ is the total Hamiltonian of the system and E its expectation value with 
respect to D. Explicit expressions for the matrix elements of N and ~ in terms 
of the spin orbitals used are given in Ref. 7. 

For spin orbitals we use a spinor notation, 

I//k (X) ----- 6k 1 (/')0~ (~) -1- r (() 

/3 r  
~-(OZ, ) ((/~k 2) ~--- (0/,/3)(I)k, (5) 

and we will normally write out only the orbital components d~k. These are in 
general complex. Similarly we will work with the orbital form ~ of the Fock- 
Dirac density matrix, 

0 = 1~)(,1,] = ( a / 3 ) ~ ( ; ) .  (6) 

The 2 x 2 matrix ~ can be expressed in terms of the number density matrix N 
and the spin density matrix vector S, 

~ = l N . l + o - .  $ (7) 

The vector tr has the Pauli matrices as components. 

The fundamental quantity for stability analyses is the second variation, 82E, of 
the total energy, that is obtained when the spin orbitals Ok of the reference 
determinant D are replaced by 

1 
r  - , , .  (J,~ + c~&).  (8) 

v l+ tc~r "  

Here ~k is a function in the orthogonal complement of the set {Ok} that is used 
in D and Ck is an arbitrary complex number. In order to connect different but 
related notations we give three forms of 62E [7], 

82E = b§ 

N 
= ~., {CkAklCt+g[CkBklCl +CkB*lfl]} 

k,l= 1 

= f [F(1)82N(1, 1')+26/(1).  32S(1, 1')] dr1 

I 11  aN( l '  2)aN(2' 1) 1 aN(l, 1)6N(2, 2) dr1 dv2---~ r12 
+ 2  r12 

_ f  65(1, 2) :fiS(2, 1) dr, dr2. 
r12 

dr1 dr2 

(9) 
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Here dk are the real and imaginary components of ck = ak + ibk, obtained by 
doubling the size of the column vector c: 

r  b=  [~]. (10) 

The operators F(1) and G(1) are the orbital forms of the effective one electron 
Hartree-Fock operator associated with the reference determinant D, 

F ( 1 ) = h l +  I dv2N(2,2) 1 f dv2P~2N(2,2') 
r12 2 r12 ' 

G(1) = - f  dr2 P~2S(2, 2') (!1) 
3 r12 

The arguments of N and $ in (10) and (11) have been abbreviated so that 1 
stands for rl, etc. 

Then we need the general form of the spin orbitals in the eight Fukutome classes. 
We sum up what has been obtained elsewhere [1], [14] by showing for each 
class the set of occupied spinors. We thus write 

I*) = [4,1, 02,  �9 � 9  ON] = (~ ,  ,8)10); 

Iv)  = [ o l ,  (I~2, ( I ) N  ] = [ ( ; b l l ,  ( / )21 . . . .  ~ / )k l ,  �9 �9 �9 ~ 1 1  (12) 
" ' "  kqS12, ~)22, (/)k2, �9 (/)N2 j" 

2.1. T(ime) (reversal) I(nvariant) C(losed) S(hells) 

I I ~ ) ) = [ / / l ' 0 ' U 2 ' 0 ' ' ' "  / /N /2 '0 ] .  

[_0, //1, 0, I/2, 0, //N/23' 

the orbitals ui(r) are real. 

(13) 

2.2. C(harge) C(urrent) W(aves) 

Same as for TICS but with complex orbitals ui(r). 

2.3. A(xial) S(pin) C(urrent) W(aves) 

ii~) = [ Ul, 0,, //2, O, . . . .  //N/2,,O, ] �9 
[0 ,  Ul ,  0, U2 . . . .  0, UN/ZJ (14) 

2.4. A(xial) S(pin) D(ensity) W(aves) 

[Ul, 0, b/2, 0 . . . .  UN/2, 0] . 
II~) = O, Vl, O, V2, . O, VN/2 d ' 

the orbitals ui(r) and vi(r) are real. 

(15) 
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2.5. A(xial) S(pin) W(aves) 

Same as (15) but with complex orbitals ui and vi. 

2.6. T(orsional) S(pin) C(urrent) W(aves) 

](l)>= I Ul '  W I '  hi2' W 2 ' ' ' "  UN/2' WN/2 1 
L--W*, U *, --W*, U *, �9 u */2 J" 

(16) 

2. 7. T(orsional) S(pin) D(ensity) W(aves) 

W l , . : ,  w:  . . . .  1 
t_ t l ,  I.)1, t2, I.)2, �9 �9 �9 tNI2, l)NI2 J '  

the orbitals ui(r), ti(r), wi(r), and vi(r) are real. 

(17) 

2.8. T(orsional) S(pin) W(aves) 

Same as (17) but with complex orbitals. 

When we know that the spin orbitals in D belong to one of these classes and 
want to study the possibility of an instability towards another  class, it is in most  
cases possible to simplify the second variation (9) so as to reduce the size of the 
matrix (1). If we go f rom TICS to TICS or to ASDW,  from A S D W  to A S D W  
or to TSDW, or f rom T S D W  to TSDW, all orbitals remain real. In such a case 
we have 

62E = b+~b = (fiO)~( ; ) = fi(~1+ ~31)a, (18) 

and we only have to find the eigenvalues of the N • N matrix ~1 + ~31. A similar 
reduction is obtained if we require all spin orbitals ~k and ~k in (8) to be real, 
but use purely imaginary coefficients Ck. Then 

62E = b+~b = (0b)~( 0 ) = b (9~ l -~ l )b .  (19) 

This type of reduction is obtained when we go f rom TICS to CCW or ASW to 
A S D W  to A S W  or f rom T S D W  to TSW. 

This is still at the spin orbital level. To aeheive further reductions we go over 
to the orbital form of the instability conditions in a few illustrative eases. In the 
formulation of the problem that is used here different eases are obtained from 
different choices of the varied functions, i.e. the ~k and their coefficients Ck in (8). 

If we start out f rom a reference determinant  with doubly filled orbitals, i.e. of 
TICS or CCW type, it seems natural to choose the coefficients in pairs such that 

N 
c2k'-1 = C2k' = ek'; k '  = 1, 2 , . . . ,  ~-. (20) 
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Then the second variation can be written 

N/2 
[c k'Ak'vCe + ~(c k'Bk'vC l' + gk,/3*,ver)], (21) 

k',l'=l 

with 

-'{k'V = A2k'-l,2z'-i + A2k'-l,zv + A2k',2v-1 + A2k',21', (22) 

and/3k't' defined in a similar way. We now have to find the eigenvalues of a 
complex (N/2)x (N/2) matrix. By means of the procedure used in Ref. 7 that 
problem can be reformulated in terms of a real N x N matrix 

62E = b+~b; (23a) 

b= (~); c = , + i b ;  (23b) 

8=1_~12+g2 ~ 1 - ~ 1  J" (23c) 

Cases with real orbitals then reduce to (N/2) x (N/2) problems like 

62E = a ( ~  + ~a)fi, (24) 

in analogy to (18), whereas with real orbitals but purely imaginary coefficients 
?k are reduced like (19): 

62E = ~(~a-  ~a)b. (25) 

Particular cases of (23), (24) and (25) are obtained by specifying reference spin 
orbitals 4Jk and varied spin orbitals ~b~, [8] according to (13)-(17). Then the spin 
integration can be carried out explicitly in thematrix elements Akl and Bkt. The 
result is an orbital form of the instability problem which is valid for the particular 
pair of classes chosen. 

The type of reduction of the instability problem that is illustrated by the choice 
(20) is just one example. The combination of the formulation of the instability 
problem used in Ref. 7 and the particular forms of the spin orbitals (13)-(17) 
leads in erich specific case to certain simplifications. Within the resulting form 
of 62E obtained in that way we can then exploit the remaining degrees of freedom. 

3. Orbital Forms of Gap Equations 

We start out from the general derivation of a gap equation given in Ref. 8. For 
that purpose we modify the notations slightly as compared to those of the 
previous section. 

The basic idea is to construct GHF spin orbitals of a more general kind than 
those used in RHF, by pairing occupied and virtual RHF spin orbitals: 

! 

2 2 = 1. (26) 



1 4 2  J . - L .  C a l a i s  

The coefficients u.  and v.  are chosen real but the relative phases of 6% and 0 .  
are included in the definition of ~.. For a given choice of virtual spin orbitals 
~ .  the strength of the pairing is determined by minimizing the expectation value 
of the determinant 

1 
D '  = ~ . T  det {~b'}, (27) 

with respect to the coefficients u.  (or v.). The N conditions obtained in that 
way can be combined in an equation for the gap function 

A = --I  ffd'~ff(l)o'g(Xl, x~) dx1. (28) 

Here 

X - *  X r o-.(x,x')=~.( )~0,~()+~.(x)~*(x'), 

and ~'efr is the effective one electron operator associated with (27) 

(29) 

Yg"er (1) = hi + f dx2 (1 -P12)p'(x2, X~), (30a) 
/"12 

N 
r r~  X t p'(x,x')= Y ~b.(x)~b. ( ) .  (30b) 

. = 1  

The extremum conditions can be written as 

e . =  7 . 2  . ,  (31) 
~/1 - A .  

where 

e.  = J YC'ef~(1)r.(Xl, X ~ )  dxl; 

~.(x,  ~') = ~ .  x -* x '  ( )6 . ( ) -6 . (x )6*(x ' ) ,  
(32) 

and 

A. = uZ~ - v~. (33) 

The gap equation is obtained by combining (28), (29), (30), (31), (32), and (33): 

A~ = _1__•2 ~ I dxl dx2 (1 -P12)o'.(Xl,rl2 XI1) 

[ ]} (34) 

Since the quantities e~, (32), can be written in a form similar to (34) we have 
in general two coupled equations for A and e. We can normally expect 4J. to be 
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a more important component  in ~b" than & .  Writing 

u.  = cos 0r ; v .  = sin 0r, 

we therefore choose 

(35) 

77" 
0 <-- 0 r -< ~, (36) 

so that 

1 
~ _ < u r - - < l  ; 

(37) 
1 

0--< vr --<~/- 2 �9 

The quantities e r and A. then have the same sign and we have 

0 -<Ar<eo .  (38) 
er 

We introduce the notations 

_L_ 1 
J~. = [ dxl  dx2 (1 -P12)r  x~)r x~); 

d r12  

(39) 

Kr,. = " | dxl  dx2 1 _  (1 -P12) t r . (x l ,  x~)~-~(x2, xD,  
. /  I'12 

so that the gap Eq. (34) can be written 

. (40) 
2 ~ [ , , / e ; + A ;  +Kr~ 4 e . + h , ,  

We further notice that the general orbital forms of the quantities A r and e .  are 

A r {I}r(1)�9 (1){I}~(1) d v ~ -  + ' - = -  ~ . ( 1 ) � 9  (1)~u (1) dva, (41) 

I I e r @.(1)�9 (1)~. (1)  d r 1 -  + ' = {I}r(1)�9 (1)~ , (1)  dr1. (42) 

Here  

~ ' ( 1 )  = V' (1 )  �9 1 + tr .  G' (1) ,  (43)  

with the form of F '  and G'  given by (11) but with the density matrix obtained 
from (30b). 

An orbital form of the gap equation is obtained when we make specific choices 
for the spin orbitals &.  Both the set of reference spin orbitals 0r  and the final 
set of spin orbitals 4}" should be associated with definite Fukutome classes. 
Different pairs of such classes will give rise to specific orbital forms of the gap 
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equation. We derive here some of the cases which are obtained when the set of 
reference spin orbitals belongs to the TICS class. 

This means that 

&. = l (a~ ' /3 ) ( f f ) ;  / z=  2k; (44) 

We use the convention N = 2(2n + 1), so that - n  -< k -< n. 

We first consider the case when the determinant D '  is of either TICS or CCW 
type. Then 

~ ' ~  0 ; ~ = 2 k ;  
&. = (45) 

In this case 

~)'(1) = F'(1) �9 1; (46a) 

UEk -~- U2k+l -~- Olk "~ V2k ~- V2k+I -~-/~k ; (46b) 

((XkOtk q- Uk~k)Ol -~ akOl ; I.t = 2 k  ; 

q~*' = {((Xkak q-Flk~k)fl  akt~; / z = 2 k + l ;  
(46c) 

A2k = A2k+X = 6k = --2 Re f fi~ (1 )F ' (1 )Xk(1)  dr1; (46d) 

e2k = e2k+l = Yk = f fi* (1)f'(1)fik(1) dr1 - f Xk (1 )F ' (1 )Xg(1 )  dye; (46e) 
d 3 

and the gap equation reduces to 

2 

with 

]kl = J2k,2l -k J2k,21+l 

- 2[(Ekl [l) + (Ekl l i )  + (kEI [l) + (/cEll/)] 

- (131 [ k )  - ( ~ l k )  - (ktl ~-17) - (k ~ tiT); 

kkl = K2k,2t q- K2k,21+l 

= 2[(/7k I IF) - (kl]ll) + (k/71 [ i )  - (kfclll)] 

- (17~/-g) + (~Tlltk) - ( k~  FE) + (gr i l l ) .  

(47) 

(48a) 

(48b) 
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Then we consider an ASDW state with ~b~ given by (44) but with 

(a, fl) 0 ; I x = 2 k ;  

~ .  = (49) 

l(~, ~)(~ ); Ix =2k+1. 
k 

Then 

g)'(1) = F ' (1) .  1 + o-3G~ ; (50) 

L/2k = / ' / 2k+1  = Ofk ; V 2 k  = V 2 k + l  = f l k  ; (5 la) 

f (Xkak + akflk)a = aka ; Ix = 2k  ; 

~b ', = ~L (Xkak __ Ukflk )fl = akfl ; I x = 2 k + l .  
(5 lb) 

The extremum conditions (31) imply with (5 l a) 

A2k Azk+l 
- -  ( 5 2 )  

e2k e2k+l' 

but in general there is no other connection between A2k and A2k+l or e2k and 
e2k+l separately. As discussed by Berggren and Johansson [15] great care is 
needed for handling the phase of the gap function. 

In many cases the functions t/k are however chosen in such a way that further 
simplifications are possible. The non vanishing component of the spin density is 
in this case 

S~ (1, 1') = 32 [xt(1)tT,(l') + bll(1)Xl(lt)]Ollj~l. (53) 
1 

By choosing the & in a suitable way one can satisfy the conditions 

I Xk(1)G'3(1)Xk(1) dr1 = I t/k(1)G~(1)~/g(1) dv l  = 0; all k, (54) 

which with (51) and (42) give 

e2k = e2k+l = Yk. (55) 

From (52) we then get 

A 2 k  = A 2 k + l  -~- 3 k .  (56) 

If (55) and (56) are satisfied the two spin orbitals aka and 6k/3 (cf. (51b)) have 
the same spin orbital energy with respect to the effective Hamiltonian (50). 

With the spin orbitals (5 lb), the integrals K,~ (39), satisfy 

Kzk,21 = --K2k+1,21+l; K2k,21+1 = --Kek+l,21, (57) 
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SO that if (54) holds the gap equation reduces to 

~k =Y , ~ o 2 ,  (58) 
I ~/Tt +~t  

with 

1 
qkl = - -2( . J2k ,2I  + J2k,2t+ 1) 

= �89 [(/~ll [k) + (Fcl~lk) + (kl] iE) + (k~//~)]. (59) 

This is the most common form of the gap equation, but we notice that this 
particular form holds only under certain conditions. 

J.-L. Calais 

4. Discussion 

The general spin orbital forms of the instability conditions and gap equations, 
that were derived in Refs. 7 and 8, respectively have served as starting points 
for this paper. Further information about the structure of these expressions 
require specialization to definite orbital forms, which must be associated with 
one of the eight classes in Fukutome's  classification scheme. These orbital forms 
constitute the starting points for actual numerical applications. 

We have indicated general procedures for going from spin orbital to orbital 
forms. Some specific examples illustrate simplifications which are possible, but 
also the delicate connection between the form of the trial functions and the final 
equations. 

Instability studies can be regarded as a preliminary step for obtaining the final 
solutions. The gap equations are normally solved by iteration and starting values 
can be obtained from eigenvectors of the "instability matrix" with negative 
eigenvalues. 

Particularly for extended systems it is very desirable to really exploit the gap 
equation in the search for the best possible solutions of G H F  type. We hope 
that the results presented in this paper will contribute towards that goal. 
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